Name: _

Date: _____

CHAPTER

Area of Polygons

Lesson 10.1 Area of Triangles

Name each figure and identify the pairs of parallel lines.

_____ is parallel to _____.

_____ is parallel to _____.

_____ is parallel to _____.

____ is parallel to ______.

5.

68

__ is parallel to ______.

4.

 $_$ is parallel to $___$.

___ is parallel to _____.

__ is parallel to _____.

6.

_____ is parallel to _____.

__ is parallel to _____.

Solve.

7. The length of a rectangle is 13 inches and its width is 9 inches. Find the area of the rectangle.

Area = \ell w
= ____ × ____
= ____ in.2

The area of the rectangle is _____ square inches.

8. The length of a rectangle is 20 meters and its width is 14 meters. Find the area of the rectangle.

Area = ℓw = _____ x ____
= ____ m^2

The area of the rectangle is _____ square meters.

9. The side length of a square is 5 centimeters. Find the area of the square.

Area = ℓ^2 = ____ × ____
= ___ cm^2

The area of the square is _____ square centimeters.

10. The side length of a square is 11 feet. Find the area of the square.

Area = ℓ^2 = _____ x ____
= ____ ft^2

The area of the square is _____ square feet.

Find the area of each triangle.

Example

In triangle ABC, \overline{CD} is perpendicular to \overline{AB} . Find the area of triangle ABC.

Base =
$$AB = 16$$
 in.

Height = <u>CD</u> = <u>9</u> in.

The **height** of the triangle is always perpendicular to the base.

The area of triangle ABC is ______ square inches.

11. In triangle XYZ, \overline{XW} is perpendicular to \overline{YZ} . Find the area of triangle XYZ.

Area of triangle =
$$\frac{1}{2}bh$$

= $\frac{1}{2} \cdot \dots \cdot \dots$
= \dots cm²

The area of triangle XYZ is _____ square centimeters.

70

12.

13.

Find the area of each triangle.

- Example -

In triangle JKL, \overline{JH} is perpendicular to \overline{KL} . Find the area of triangle JKL.

Base =
$$\frac{KL}{}$$
 = $\frac{6}{}$ ft

$$Height = \underline{JH} = \underline{2.8} ft$$

Area of triangle =
$$\frac{1}{2}bh$$

= $\frac{1}{2} \cdot \frac{6}{2 \cdot 2 \cdot 8} \cdot \frac{2 \cdot 8}{2 \cdot 2 \cdot 8}$
= $\frac{8 \cdot 4}{2 \cdot 2 \cdot 8}$ ft²

The area of triangle JKL is 8.4 square feet.

JK is not the height of the triangle, because it is not perpendicular to KL.

14. In triangle RST, \overline{RU} is perpendicular to \overline{ST} . Find the area of triangle RST.

Base = _____ in.

Height = _____ in.

Area of triangle = $\frac{1}{2}bh$ = $\frac{1}{2} \cdot \dots \cdot \dots$

= _____ in.²

The area of triangle *RST* is ______ square inches.

15.

16.

Find the height of each triangle.

Example -

The area of triangle DEF is 60 square centimeters. Find the height of the triangle.

Area of triangle $DEF = \frac{1}{2}bh$

$$\frac{7.5}{}$$
 = h

The height of triangle DEF is $\underline{-7.5}$ centimeters.

17. The area of triangle STU is 108 square inches. Find the height of the triangle.

Area of triangle
$$STU = \frac{1}{2}bF$$

The height of triangle STU is _____ inches.

18. The area of triangle *PQR* is 300 square centimeters.

19. The area of triangle XYZ is 198 square feet.

Find the base of each triangle.

Example

The area of triangle *CDE* is 135 square centimeters. Find the base of the triangle.

Area of triangle $CDE = \frac{1}{2}bh$

$$135 = \frac{1}{2} \cdot b \cdot 18$$

$$\underline{135} = \frac{1}{2} \cdot \underline{18} \cdot b$$

$$_{-15}$$
 = b

The base of triangle CDE is $\underline{\hspace{1cm}15}$ centimeters.

Rearrange the terms using the commutative property.

20. The area of triangle *GHJ* is 286 square inches. Find the base of the triangle.

Area of triangle $GHJ = \frac{1}{2}bh$

$$\underline{\hspace{1cm}} = \frac{1}{2} \cdot b \cdot \underline{\hspace{1cm}}$$

$$\underline{\hspace{1cm}} = \frac{1}{2} \cdot \underline{\hspace{1cm}} \cdot b$$

The base of triangle GHJ is ______ inches.

21. The area of triangle *LMN* is 72 square centimeters.

22. The area of triangle VWX is 113.4 square meters.

For point E to be in the park, the x-coordinate has to be $\underline{2}$ grid squares to the right of \overline{AB} .

$$2 + 2 = 4$$
 grid squares

So, point E is $\underline{4}$ grid squares to the right of the y-axis.

The x-coordinate of point E is $\underline{4} \times \underline{5} = \underline{20}$. For point E to be in the park, the y-coordinate has to be 1 grid square below \overline{AD} .

$$11 - 1 = 10$$
 grid squares

So, point *E* is $\underline{10}$ grid squares above the *x*-axis. The *y*-coordinate of point *E* is $\underline{10} \times \underline{5} = \underline{50}$. The coordinates of point *E* are (20, 50).

- **21.** *J* (15, 24), *K* (6, 3), *L* (36, 3), *M* (36, 24)
- **22.** Sum of the parallel sides = 51 meters Height of the trapezoid = 21 meters
- 23. Area of the stage = 535.5 square meters
- **24.** 94.8 meters
- **25.** (21, 15)

Lesson 9.3

- 2. It is a straight line graph.
- 3. From the graph, Shannon's wage is \$28.
- **4.** From the graph, Shannon must work for $\underline{5}$ hours.

5.
$$w = 8 \cdot (\underline{5} + \underline{3})$$

= $8 \cdot \underline{8}$
= $\underline{\$64}$

Shannon earns \$64.

- **6.** $h \ge 2.5$
- 7. \underline{w} is the dependent variable and \underline{h} is the independent variable.

8.	Time (t weeks)	0	1	2	3	4	5
	Rental Fees (c dollars)	4	6	8	<u>10</u>	<u>12</u>	<u>14</u>

Rental Fees of a Second-hand Bookstore

- **9.** 4 weeks
- **10.** \$22
- **11.** *t* < 3

Chapter 10

Lesson 10.1

1. rectangle

 \overline{WZ} is parallel to \overline{XY} .

 \overline{WX} is parallel to \overline{ZY} .

2. square

 \overline{MQ} is parallel to \overline{NP} .

 \overline{MN} is parallel to \overline{QP} .

3. trapezoid

$$\overline{PS}$$
 is parallel to \overline{QR} .

4. parallelogram

$$\overline{AD}$$
 is parallel to \overline{BC} .

- \overline{AB} is parallel to \overline{DC} .
- 5. trapezoid

$$\overline{DG}$$
 is parallel to \overline{EF} .

6. rhombus

$$\overline{JN}$$
 is parallel to \overline{KM} .

7. $\overline{\text{Area}} = \ell w$

$$= 13 \times 9$$

$$= 117 \text{ in.}^2$$

The area of the rectangle is 117 square inches.

8. Area = ℓw

$$= 20 \times 14$$

$$= 280 \text{ m}^2$$

The area of the rectangle is 280 square meters.

9. Area = ℓ^2

$$= 5 \times 5$$

$$= 25 \text{ cm}^2$$

The area of the square is 25 square centimeters.

10. Area = ℓ^2

$$= 11 \times 11$$

The area of the square is 121 square feet.

11. Base = $\underline{YZ} = \underline{20}$ cm

Height =
$$\underline{XW} = \underline{15}$$
 cm

Area of triangle =
$$\frac{1}{2}bh$$

$$=\frac{1}{2}\cdot\underline{20}\cdot\underline{15}$$

$$= 150 \text{ cm}^2$$

The area of triangle XYZ is 150 square centimeters.

- 12. 84 square feet
- 13. 130 square meters
- **14.** Base = ST = 8 in.

Height =
$$RU = 3.6$$
 in.

Area of triangle =
$$\frac{1}{2}bh$$

$$= \frac{1}{2} \cdot 8 \cdot 3.6$$

= 14.4 in.²

The area of triangle RST is 14.4 square inches.

- 15. 24 square feet
- 16. 37.8 square meters
- **17.** Area of triangle $STU = \frac{1}{2}bh$

$$108 = \frac{1}{2} \cdot 24 \cdot h$$

$$108 = 12 \cdot h$$

$$108 \div 12 = 12 \cdot h \div 12$$

$$9 = h$$

The height of triangle STU is 9 inches.

- 18. 20 centimeters
- **19.** 24 feet
- **20.** Area of triangle $GHJ = \frac{1}{2}bh$

$$286 = \frac{1}{2} \cdot b \cdot 26$$

$$\underline{286} = \frac{1}{2} \cdot \underline{26} \cdot b$$

$$286 = 13 \cdot h$$

$$286 \div 13 = 13 \cdot h \div 13$$

 $22 = h$

The base of triangle GHJ is 22 inches.

- 21. 16 centimeters
- **22.** 14 meters

Lesson 10.2

1. Base = GH = 20 in.

Height =
$$JK = 12$$
 in.

Area of parallelogram FGHJ = bh

$$= \underline{20} \cdot \underline{12}$$

$$= 240 \text{ in.}^2$$

The area of parallelogram FGHJ is 240 square inches.

- 2. 48 square meters
- 3. 28.5 square centimeters
- **4.** Height = LM = 20 in.

Sum of bases =
$$HL + JK$$

$$= 15 + 30$$

$$= 45 in.$$

Area of trapezoid HJKL

$$=\frac{1}{2}h(b_1+b_2)$$

$$=\frac{1}{2}\cdot\underline{20}\cdot\underline{45}$$

$$= 450 \text{ in.}^2$$

The area of trapezoid HJKL is 450 square inches.

- 5. 78 square centimeters
- 6. 162 square feet
- **7.** Height = GH = 5 in.

Sum of bases =
$$\underline{DG} + \underline{EF}$$

$$= 5 + 9$$

$$= 14 in.$$

Area of trapezoid DEFG

$$=\frac{1}{2}h(b_1+b_2)$$

$$=\frac{1}{2}\cdot\underline{5}\cdot\underline{14}$$

$$= 35 \text{ in.}^2$$

The area of trapezoid DEFG is 35 square inches.